Balanced audio cables/connections use a number of techniques to reduce noise.
A typical balanced cable contains two identical wires, which are twisted together and then wrapped with a third conductor (foil or braid) that acts as a shield.The term "balanced" comes from the method of connecting each wire to identical impedances at source and load. This means that much of the electromagnetic interference will induce an equal noise voltage in each wire. Since the amplifier at the far end measures the difference in voltage between the two signal lines, noise that is identical on both wires is rejected. The noise received in the second, inverted line is applied against the first, upright signal, and cancels it out when the two signals are subtracted.
The separate shield of a balanced audio connection also yields a noise rejection advantage over an unbalanced two-conductor arrangement (such as used in typical home stereos) where the shield must also act as the signal return wire. Any noise currents induced into a balanced audio shield will not therefore be directly modulated onto the signal, whereas in a two-conductor system they will be. This also prevents ground loop problems, by separating the shield/chassis from signal ground.
Signals are often transmitted over balanced connections using the differential mode, meaning the wires carry signals of opposite polarity to each other (for instance, in an XLR connector, pin 2 carries the signal with normal polarity, and pin 3 carries an inverted version of the same signal).
Despite popular belief, this is not necessary for noise rejection. As long as the impedances are balanced, noise will couple equally into the two wires (and be rejected by a differential amplifier), regardless of the signal that is present on them.
[1] A simple method of driving a balanced line is to inject the signal into the "hot" wire through a known source impedance, and connect the "cold" wire to ground through an identical impedance. Due to common misconceptions about differential signalling, this is often referred to as a quasi-balanced or impedance-balanced output, though it is, in fact, fully balanced and will reject common-mode interference.
However, there are some benefits to driving the line with a fully differential output:
The electromagnetic field around a differential line is ideally zero, which reduces crosstalk into adjacent cables.
Though the signal level would not be changed due to nominal level standardization, the maximum output from the differential drivers is twice as much, giving 6 dB extra headroom.
[2] (if the amplifiers are identical, though, their output noise sums to 3 dB more than a single amplifier, decreasing dynamic range).
Noise that is correlated between the two amps (from imperfect power supply rejection, for instance), would be cancelled out.
At higher frequencies, the output impedance of the output amplifier can change, resulting in a small imbalance. When driven in differential mode by two identical amplifiers, this impedance change will be the same for both lines, and thus cancelled out.
[3] Differential drivers are also more forgiving of incorrectly wired adapters or equipment that unbalances the signal by shorting pin 2.
[4]Professional audio products (recording, public address, etc.) provide differential balanced inputs and outputs, typically via XLR or TRS connectors. However, in most cases, a differential balanced input signal is internally converted to a single-ended signal via transformer or electronic amplifier. After internal processing, the single-ended signal is converted back to a differential balanced signal and fed to an output. A small number of professional audio products have been designed as an entirely differential balanced signal path from input to output; the audio signal never unbalances. This design is achieved by providing identical (mirrored) internal signal paths for both pin 2 and pin 3 signals (AKA "hot" and "cold" audio signals). In critical applications, a 100% differential balanced circuit design can offer better signal integrity by avoiding the extra amplifier stages or transformers required for front-end unbalancing and back-end rebalancing. Fully balanced internal circuitry has been promoted as yielding 3dB better dynamic range.
[5] On TRS plugs, the tip is "hot" (positive), the ring is "cold" (negative), and the sleeve is ground (earthed or chassis). If a stereophonic or other binaural signal is plugged into such a jack, one channel (usually the right) will be subtracted from the other (usually the left), leaving an unlistenable L − R (left minus right) signal instead of normal monophonic L + R. Reversing the polarity at any other point in a balanced audio system will also result in this effect at some point when it is later mixed-down with its other channel.
Unbalanced signals can be converted to balanced signals by the use of a balun, often through a DI unit.
If balanced audio must be fed into an unbalanced connection the electronic design used for the balanced output stage must be known. In most cases the negative output can be tied to ground but in certain cases the negative output should be left disconnected.
In telecommunications and professional audio, a balanced line or balanced signal pair is a transmission line consisting of two conductors of the same type, each of which have equal impedances along their lengths and equal impedances to ground and to other circuits.
[6] The chief advantage of the balanced line format is good rejection of external noise. Common forms of balanced line are twin-lead, used for radio frequency signals and twisted pair, used for lower frequencies. They are to be contrasted to unbalanced lines, such as coaxial cable, which is designed to have its return conductor connected to ground, or circuits whose return conductor actually is ground. Balanced and unbalanced circuits can be interconnected using a transformer called a balun.
Circuits driving balanced lines must themselves be balanced to maintain the benefits of balance. This may be achieved by differential signaling, transformer coupling or by merely balancing the impedance in each conductor.
An example of balanced lines is the connection of microphones to a mixer in professional systems. Classically, both dynamic and condenser microphones used transformers to provide a differential-mode signal. While transformers are still used in the large majority of modern dynamic microphones, more recent condenser microphones are more likely to use electronic drive circuitry. Each leg, irrespective of any signal, should have an identical impedance to ground. Pair cable (or a pair-derivative such as star quad) is used to maintain the balanced impedances and close twisting of the cores ensures that any interference is common to both conductors. Providing that the receiving end (usually a mixing console) does not disturb the line balance, and is able to ignore common-mode (noise) signals, and can extract differential ones, then the system will have excellent immunity to induced interference.
Typical professional audio sources, such as microphones, have three-pin XLR connectors. One is the shield or chassis ground, while the other two are signal connections. These signal wires carry two copies of the same signal, but with opposite polarity. (They are often termed "hot" and "cold," and the AES14-1992(r2004) Standard [and EIA Standard RS-297-A] suggest that the pin that carries the positive signal that results from a positive air pressure on a transducer will be deemed 'hot'. Pin 2 has been designated as the 'hot' pin, and that designation serves useful for keeping a consistent polarity in the rest of the system.) Since these conductors travel the same path from source to destination, the assumption is that any interference is induced upon both conductors equally. The appliance receiving the signals compares the difference between the two signals (often with disregard to electrical ground) allowing the appliance to ignore any induced electrical noise. Any induced noise would be present in equal amounts and in identical polarity on each of the balanced signal conductors, so the two signals’ difference from each other would be unchanged. The successful rejection of induced noise from the desired signal depends in part on the balanced signal conductors receiving the same amount and type of interference. This typically leads to twisted, braided, or co-jacketed cables for use in balanced signal transmission.
To convert a signal from balanced to unbalanced requires a balun. For example, baluns can be used to send line level audio or E-carrier level 1 signals over coaxial cable (which is unbalanced) through 300 feet (91 m) of Category 5 cable by using a pair of baluns at each end of the CAT5 run. The balun takes the unbalanced signal, and creates an inverted copy of that signal. It then sends these 2 signals across the CAT5 cable as a balanced signal. Upon reception at the other end, the balun takes the difference of the two signals, thus removing any noise picked up along the way and recreating the unbalanced signal.
No comments:
Post a Comment